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Abstract: Honey bees are commonly used to study metabolic processes, yet the molecular mechanisms
underlying nutrient transformation, particularly proteins and their effects on development, health,
and diseases, still evoke varying opinions among researchers. To address this gap, we investigated the
digestibility and transformation of water-soluble proteins from four artificial diets in long-lived honey
bee populations (Apis mellifera ligustica), alongside their impact on metabolism and DWV relative
expression ratio, using transcriptomic and protein quantification methods. Diet 2, characterized by
its high protein content and digestibility, was selected for further analysis from the other studied
diets. Subsequently, machine learning was employed to identify six diet-related molecular markers:
SOD1, Trxr1, defensin2, JHAMT, TOR1, and vg. The expression levels of these markers were found to
resemble those of honey bees who were fed with Diet 2 and bee bread, renowned as the best natural
food. Notably, honey bees exhibiting chalkbrood symptoms (Control-N) responded differently to the
diet, underscoring the unique nutritional effects on health-deficient bees. Additionally, we proposed
a molecular model to elucidate the transition of long-lived honey bees from diapause to development,
induced by nutrition. These findings carry implications for nutritional research and beekeeping,
underscoring the vital role of honey bees in agriculture.

Keywords: Apis mellifera; insect model; nutrition; water-soluble proteins; innate immunity; winter
honey bees; early spring; bee bread; functional food

1. Introduction

Honey bees produce many products for human health and play a crucial ecological
role in both natural ecosystems and agriculture. Similar to other insects, honey bees present
both an alternative source of protein for humans and a convenient animal model for fields
from genetics to neurobiology, especially for the early stage preclinical research of pathogen
infection experiments, innate immune system research, and nutrition effects [1,2].

These benefits of honey bees are available because insects and humans possess some
equivalent organs and similar biological systems, including the evolutionarily conserved
gut and digestive system [1]. Malnutrition, overfeeding, high-sugar diet (HSD), and high-
fat diet (HFD) effects on metabolism in a Drosophila model were described [3–5], with a focus
on their effects on lifespan, health, age-related diseases, and aging [6–8]. Next, nutrition,
proteins in the diet, and their transformation from food to organism are critical, as animals
construct their bodies from amino acids derived from animal and plant foods, which are
subsequently passed through the food chain. For instance, proteins are responsible for the
development of the fat body in the abdomen of individual honey bees, influencing energy
storage, production, and the secretion of vitellogenin (vg) protein, antimicrobial peptides,
and components of the humoral immune response [9]. Despite the obvious importance of
proteins for animals, our understanding of their effects on health and development still
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contains gaps. To study this, a model sensitive to protein deficiency needs to be chosen
from among the many available insect models.

In this context, the health of a honey bee colony primarily relies on proteins collected
by forager honey bees from plant sources, such as flower pollen, and their subsequent
storage in the hive in the form of bee bread [10]. This food, together with nectar, supports
the development and maintenance of a normal immune system [11], as they supplement
honey bees not only with proteins and carbohydrates, but also hydrophilic antioxidants
and other necessary nutrients [12]. In honey bees, colonies without pollen supply maintain
brood rearing only for a short time, first by using up the stored bee bread and later by
depleting their body reserves [13]. If the pollen dearth continues, non-foraging honey bees
engage in the cannibalism of larvae younger than three days old [14], and no more brood
can be produced [6], because pollen ingestion is necessary to develop hypopharyngeal
glands in the head [15,16]. So, honey bees seem to be a good model to study the protein-rich
needs and deficiencies of animals.

Moreover, beekeepers and agriculturists need to develop artificial (pollen substitute)
diets for honey bees to overcome the scarcity of pollen sources in nature during early
spring, dry summers, and cold fall months [17–19]. This scarcity has led to honey bee
starvation and increasing colony losses worldwide [8]. To overcome pollen dearth times,
beekeepers use a multitude of different pollens, artificial diets, and feeding practices, but
there is no robust research that universally supports their benefits for the health of honey
bees [20]. Moreover, the given pollen is expensive and can spread disease [21,22]. This
situation emphasizes the significance of developing pollen substitute diets for honey bees,
especially given the established relationship between nutrition and the immune system of
animals [23–25].

Nutrients play a crucial role in controlling the expression of cytokines via the Toll
pathway, thereby affecting neutralized cytotoxicity [26]. Conversely, a decline in protein
metabolism, associated with the diminishing concentration of certain amino acids, can lead
to endoplasmic reticulum (ER) stress and the activation of pro-inflammatory cytokines [27].
Notably, increasing dietary protein intake improved the immune status of one of two pig
breeds, as evidenced by changes in immunoglobulin and cytokine levels [23]. In experi-
ments with caterpillars of the insect Spodoptera littoralis, non-immune genes (Arylphorin,
EF1, Armadillo, and Tubulin) showed a consistently weak response to dietary manipulation.
In contrast, immune genes such as Toll, Prophenoloxidase, and Lysozyme (Toll pathway) and
Moricin and Relish (Imd pathway) genes exhibited stronger responses [24]. Despite the
considerable interest in the interaction between dietary protein and immunity, there are
still areas of limited knowledge regarding standard molecular effects and nutrient markers
to identify the best diet.

To address these gaps, we conducted a field experiment on overwintered Apis mellifera
ligustica honey bees in early spring, when natural sources of nectar and pollen are scarce.
Therefore, this study aims to examine the impacts of different types of pollen substitution
diets (Diet 1, Diet 2, and Control-N), the commercial diet supplement Megabee, and bee
bread (Control-P) based on several aspects: (1) the relationship between water-soluble
protein content in diets and protein digestion in honey bees (protein quantification); (2) the
transformation of dietary protein into body protein content, measured separately in the
head, thorax, and abdomen of honey bees (protein quantification and metabolomics); (3) the
impact of these diets on the spring dynamics of DWV and SBV relative expression ratio
(transcriptomic analysis); and (4) the effects of the diets on immunity, including the expres-
sion of genes related to ROS enzymes (SOD1, SOD2, and Trxr1), innate immunity pathways
(Toll: spz and dorsal 1; Imd: PGRP-LC and relish; and JAK/STAT: domeless), antimicrobial
peptide genes (AMPs: defensin 2 and apid 1), and development and nutrition-related genes
(vg, JHAMT, and TOR1) in overwintered individual honey bees (transcriptomic analysis).
This study ultimately aims to identify standard molecular effects and nutrient markers.
Six diet-related marker genes were selected, and they were employed to select the optimal
pollen substitute diet for honey bees in comparison to the positive control (Control-P). This
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research emphasizes the impact of diets on genes associated with the defense system and
nutrition-related development, laying the groundwork for establishing molecular markers
to assess animal nutrition status. These markers could help in choosing alternative diets
and alleviating seasonal malnutrition in animals in agriculture, thus enhancing our quality
of life in a changing climate.

2. Results
2.1. Protein Content in Diets and Its Transformation into Honey Bee Body

The top two best diets were identified based on their high protein content and di-
gestibility in honey bees: Control-P (bee bread) and Diet 2 (Figure 1A).
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feeding experiment. Conversely, Diet 2 significantly stimulated (p < 0.05) more protein 
elevation in the abdomen than in the head and thorax (Figure 1B,C). Moreover, similar 
patterns were observed between proteins in the diet and the digestibility of proteins orig-
inating from different diets (Figure 1A). To confirm this, the data were analyzed using a 
Pearson correlation, revealing a very high correlation (r = 0.974; p < 0.05) between protein 

Figure 1. Protein content in diets and its transformation into honey bee body in overwintered honey
bees after dieting in early spring (sampling date: 8 March 2023). One-way ANOVA, Duncan post hoc
test (p < 0.05). (A)—Percentage of proteins in diets and their digestibility. (B)—Protein concentration
in different parts of the honey bee body; gut was removed from the abdomen. (C)—Change in protein
concentration during experimental feeding (transformation of protein from diet to honey bee body);
gut was removed from the abdomen. In (A), italicized lowercase letters denote significant differences
in protein content among diets, while lowercase letters represent significant differences in protein
digestibility among honey bees. In (B,C), italicized lowercase letters denote significant differences
between samples in the head, lowercase letters represent significance between samples in the thorax,
and italicized uppercase letters indicate significance between samples in the abdomen surrounding
the current chart.

Control-P significantly stimulated (p < 0.05) protein elevation in the head and thorax
more than in the abdomen compared to other overwintered honey bees after a 20 day
feeding experiment. Conversely, Diet 2 significantly stimulated (p < 0.05) more protein
elevation in the abdomen than in the head and thorax (Figure 1B,C). Moreover, similar
patterns were observed between proteins in the diet and the digestibility of proteins
originating from different diets (Figure 1A). To confirm this, the data were analyzed using
a Pearson correlation, revealing a very high correlation (r = 0.974; p < 0.05) between protein
digestibility in honey bees and the protein concentration in the diet. To quantify this
relationship, the protein digestibility was divided by the protein content in each diet. This
resulted in values ranging from 3.05 to 3.57 overall for the experimental diets, bee bread,
and the commercial diet. This suggests that diet digestibility can be predicted based on
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the known soluble protein content. However, the index of protein transformation for Diet
2 was 4.9, higher than that of the other diets (Figure 1A), indicating potentially notable
properties unique to this diet.

2.2. Influence of the Diets on Relative Expression Ratio of the Virus in Honey Bee Colonies
in Spring

The dynamics of the sac brood virus (SBV) and deformed wing virus (DWV) loads
were examined in honey bees sampled during the spring. The SBV relative expression
ratio was not detected, whereas the DWV relative expression ratio was lower in honey
bees from colonies fed pollen substitute diets both before and after dieting (Figure 2A) on
16 February and 8 March, compared to honey bees from Control-P colonies, indicating the
superior performance of pollen substitute diets over overwintered bee bread. However,
with the appearance of natural pollen and the increased activity of honey bee flight on
28 March, only honey bees from Diet 2 colonies maintained a lower DWV load than those
from Control-P and other colonies (Figure 2B).
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Figure 2. Deformed wing virus (DWV) load in honey bee colonies in spring. (A)—Relative expression
level of DWV in overwintered honey bees after dieting in early spring (sampling date: 8 March 2023).
One-way ANOVA, Duncan post hoc test (p < 0.05). (B)—Dynamics of DWV relative expression ratio
before (sampling date: February 16), during (sampling dates: 8 and 29 March), and after (sampling
date: 20 April) the experiments to investigate the long-term effect of the diets. owb—the long-lived
overwintered bees; owb+diet—long-lived overwintered honey bees after dieting; new+diet—short-
lived new honey bees emerged to replace overwintered honey bees; nurses—short-lived honey bees
provided nursing duties; foragers—short-lived honey bees returning to the hive with pollen loads. In
(A), uppercase letters indicate significant differences in DWV expression among honey bees from
different dieting groups.

Next, on 20 April, we examined the long-term effects of diets on short-lived honey
bees, which were reared a month prior by long-lived honey bees that had been fed diets
within the colony. We observed a similar trend in DWV load among nurse honey bees
from Diet 2 colonies, although the virus was detected in foragers as well. This indicates
a task-dependent immune response within the same hive environment and suggests that
pollen substitute diets may have negligible or no long-term effect.

2.3. Selecting of the Nutrition-Related Markers Based on Statistical Scores

The honey bees from different dieting groups were identified based on a comparison of
the 18 variables, including the 13 gene expressions via agglomerative hierarchical clustering
(AHC) (Figure 3A). The silhouette index (0.164) determined that AHC was feasible. Next,
the same dataset was trained by principal component analysis (PCA) (Figure 3B), where
the first principal component (F1) explained a significant portion of the dataset’s variability,
accounting for 49.34%.
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Figure 3. Discrimination of overwintered honey bees was conducted based on 18 variables, which
included protein content in the diet, protein digestion, and gene expressions related to the defense
system and nutrition. (A)—Agglomerative hierarchical clustering. (B)—Principal component analysis
(sampling date: 8 March 2023). In (A), C1 and C2 represent two different clusters identified by the
AHC analysis. In (B), F1 and F2 represent the first and second principal components, respectively,
which capture the maximum variability in the dataset along orthogonal axes.

Variables derived from the PCA method were ranked depending on their decreasing
factor loadings, and the top 5 were SOD2, SOD1, dorsal 1, JHAMT, and TOR1, which appear
to be markers. Notably, honey bees from the Control-P and Diet 2 groups clustered closely
together in both AHC and PCA analyses, predicting their physiological similarity.

The elastic net regression method was utilized to predict interactions in four models
between four protein-related dependent variables (protein concentrations in the diet and
in the head, thorax, and abdomen of honey bees) and a gene expression dataset. The
four models constructed using elastic net regression were compared based on their mean
squared error (MSE), with Model 1 exhibiting the lowest MSE (1.983), indicating its superior
predictive accuracy. Models 1 and 2 demonstrated the highest R-squared value (0.935 and
0.915, respectively), suggesting that they explain a larger proportion of the variance in
the target variable compared to the other models. However, the analysis ranked gene
expression variables similarly across all models, with TOR1, SOD1, and defensin 2 genes
being the predominant variables. The vg gene was associated with proteins in the head,
thorax, and abdomen, while the JHAMT and Trxr1 genes were associated with diet and
abdomen proteins (Figure 4).
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Altogether, six marker gene expressions were visualized in the circular plot to charac-
terize the physiology of honey bees fed with different diets (Figure 5A). We compared honey
bees from previously selected experimental Diet 2 colonies using nutrition-related markers
with honey bees from Control-P colonies. This comparison was made because the proteins
in bee bread (diet in Control-P colonies), as well as their digestion and transformation, were
found to be the highest. The honey bees, while being fed Diet 2, exhibited the upregulation
of one nutrition-related marker gene, defensin 2. However, the expressions of other genes
after feeding tended to decrease, approaching those of honey bees from Control-P colonies.
The expression of the JHAMT gene after feeding showed no significant differences between
honey bees from Control-P and Diet 2 colonies, while the expressions of TOR1, SOD1, and
Trxr1 overlapped (Figure 5B). However, the expression of the vg marker gene in honey bees
from Diet 2 colonies during dieting was decreased compared to honey bees from Control-P
colonies. So, the effectiveness of Diet 2 on honey bee nutrition status was found to be
comparable to that of the Control-P diet. However, the hyper-, normal-, and hypo-levels of
gene expressions have not been standardized yet, and we lack a methodology to establish a
universal scale.
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Figure 5. Gene expression of selected top molecular markers in response to nutrition and
head/thorax/abdomen proteins of overwintered honey bees (sampling date: 8 March 2023).
(A)—Circular plot displaying the expressions of six marker genes. (B)—Heat map with cluster-
ing by honey bee groups (horizontal) and 13 gene expressions (vertical), highlighting the marker
genes with blue dotted squares. Boxes marked with (A) represent statistically significant upregulation,
and those marked (B–D) represent downregulation due to nutrition response, with a p-value less
than 0.05. One-way ANOVA and Duncan post hoc test were used.

2.4. Influence of the Diets on the Defense System of Overwintered Honey Bees

The honey bees from experimental colonies were compared with honey bees from
Control-P (positive control) and Control-N (not normal) colonies. Honey bees from Control-
P colonies only received combs with natural honey and bee bread. Honey bees from Control-
N colonies were switched from “experimental” to “not normal” colonies for analysis
because they exhibited symptoms of chalkbrood from the end of March, and they died at
the end of May. However, honey bees from Control-N colonies were not “negative control”,
meaning malnutrition, because they received a pollen substitute diet, of which components
are listed in Table 1.

The data before and after the experimental dieting represented the initial and the
diet-stimulated innate immunity pathways on 16 February and 8 March, respectively.
Results are visualized in Figure 6 to illustrate the dynamics of ten gene expressions: spz
and dorsal-1 (Toll pathway), PGRP-LC and relish (Imd pathway), domeless (JAK/STAT
pathway), defensin2 and apid1 (antimicrobial peptides, AMPs), and SOD1, SOD2, and Trxr1
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(antioxidative defense genes coding ROS enzymes). Comparison was conducted using
one-way ANOVA and Duncan post hoc test (p < 0.05).

Table 1. Composition of pollen substitute diets with constant ingredients (%).

Ingredients Diet 1 (Soytide) Diet 2 (SAC) Control-N (Apple Juice)

Brewer’s yeast 39.69 39.69 39.69
Egg yolk 2.21 2.21 2.21

Defatted soybean powder - - 2.21
Sugar 35.36 35.36 35.36

Boiled water 5.16 7.16 7.16
Canola oil 1.01 1.01 1.01
Cellulose 0.88 0.88 0.88

Wheat bran powder 0.88 0.88 0.88
Multiple vitamins 0.44 0.44 0.44

L-methionine 0.1 0.1 0.1
L-lysine 0.24 0.24 0.24

Citric acid 1.85 1.85 1.85
IMP 0.0002 0.0002 0.0002
GMP 0.0002 0.0002 0.0002

Tangerine juice 10 4 4
Soytide powder 2.21 2.21 -

Apple juice - 4 4
Chlorella powder - 0.08 -

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 18 
 

 

control”, meaning malnutrition, because they received a pollen substitute diet, of which 
components are listed in Table 1. 

The data before and after the experimental dieting represented the initial and the 
diet-stimulated innate immunity pathways on 16 February and 8 March, respectively. Re-
sults are visualized in Figure 6 to illustrate the dynamics of ten gene expressions: spz and 
dorsal-1 (Toll pathway), PGRP-LC and relish (Imd pathway), domeless (JAK/STAT path-
way), defensin2 and apid1 (antimicrobial peptides, AMPs), and SOD1, SOD2, and Trxr1 
(antioxidative defense genes coding ROS enzymes). Comparison was conducted using 
one-way ANOVA and Duncan post hoc test (p < 0.05).  

 
Figure 6. The dynamics of defense system gene expressions in overwintered honey bees are repre-
sented by means and standard deviations before (owb, 16 February) and after the diet experiment 
(owb+diet, 8 March). (A–C) represent the gene expressions related to ROS enzymes. (D,G) represent 
the gene expressions related to Toll pathway. (E,H) represent the gene expressions related to Imd 
pathway. (F) represents the gene expression related to JAK/STAT pathway. (I,J) represent the gene 
expressions related to antimicrobial peptides (AMPs). One-way ANOVA and Duncan post hoc test 
(p < 0.05) were conducted. Owb represents overwintering bees, while owb+diet represents overwin-
tered honey bees after dieting. In each chart of Figure 6, italicized uppercase letters indicate signifi-
cant differences between overwintered honey bee samples collected on February 16 before dieting. 
Lowercase letters on the same chart denote significant differences between honey bee samples after 
the dieting on 8 March. The dotted line squares in (E–H,J) indicate magnified areas on the chart, 
highlighting significant differences in gene expression among honey bees sampled on the same day. 

  

Figure 6. The dynamics of defense system gene expressions in overwintered honey bees are repre-
sented by means and standard deviations before (owb, 16 February) and after the diet experiment



Int. J. Mol. Sci. 2024, 25, 4271 8 of 18

(owb+diet, 8 March). (A–C) represent the gene expressions related to ROS enzymes. (D,G) represent
the gene expressions related to Toll pathway. (E,H) represent the gene expressions related to Imd
pathway. (F) represents the gene expression related to JAK/STAT pathway. (I,J) represent the gene
expressions related to antimicrobial peptides (AMPs). One-way ANOVA and Duncan post hoc
test (p < 0.05) were conducted. Owb represents overwintering bees, while owb+diet represents
overwintered honey bees after dieting. In each chart of Figure 6, italicized uppercase letters indicate
significant differences between overwintered honey bee samples collected on February 16 before
dieting. Lowercase letters on the same chart denote significant differences between honey bee samples
after the dieting on 8 March. The dotted line squares in (E–H,J) indicate magnified areas on the chart,
highlighting significant differences in gene expression among honey bees sampled on the same day.

The dynamics of the standard molecular effect ROS enzymes genes in response to
dieting included a decrease in SOD1 expression and an increase in SOD2 expression
compared to the honey bee condition before and after dieting (Figure 6A,B). The effect in
the Trxr1 gene was unclear (Figure 6C).

The dynamics of the standard molecular effect on the response of innate immunity
genes at the recognition steps in the Toll, Imd, and JAK/STAT pathways related to dieting
were the same for all honey bees except those from Control-N colonies. Even though
significant differences between honey bees were initially calculated on 16 February, after
dieting on 8 March, there were no differences. The molecular effect in the dynamic response
of innate immunity pathways (Toll, Imd, and JAK/STAT) to the dieting of honey bees from
Control-N colonies showed a significant increase in expression during the recognition step
(spz, PGRP-LC, and domeless, respectively) and AMP (apid 1), which was not observed in
other honey bee groups. This suggests a potential immune disturbance and indicates issues
in honey bees from Control-N colonies compared to others, where no significant differences
were observed after dieting (Figure 6D–F).

However, the subsequent dynamic response in all honey bees after dieting showed a
general increase in dorsal 1 and relish gene expressions at the recognition step of the Toll
and Imd pathways of innate immunity (Figure 6G,H), as well as defensin 2 marker gene
expression for antimicrobial peptides (AMPs) (Figure 6I). However, the dynamics of the
defensin 2 gene were different in honey bees from Diet 1 colonies, where the direction of the
trend was opposite (Figure S2).

Importantly, the honey bees from Diet 2 colonies did not belong to the same statis-
tically significant group in marker gene expressions (SOD1, Trxr1, and defensin 2), but
they exhibited gene expression patterns closer to those of honey bees from Control-P
colonies compared to other honey bees in terms of ROS enzymes and innate immunity
gene expressions.

2.5. Influence of the Diets on the Nutrition Rate of Overwintered Honey Bees

The honey bees from experimental colonies were compared with those from Control-
P (positive control) and Control-N (not normal) colonies using the same analysis as in
Section 2.4. The focus was on the expression of genes such as vitellogenin (vg), which
responds to nutrition, the JHAMT gene, positively correlated with juvenile hormone (JH)
biosynthesis [28], and the TOR1 gene, a nutrient-sensing kinase involved in mobilizing
nutritional resources from tissues [29]. These genes were previously selected as markers.

The dynamic response of three genes was assessed in gene expression differences
after and before dieting (Figure 7A–C and Figure S3). The overall trend in the dynamic
response of the TOR1 gene to dieting was a decrease. However, other genes did not reveal
any consistent trends. We visualized the co-repressions of vg and JHAMT in honey bees in
Control-N and Diet 1 colonies, corresponding to the aging of honey bees with a decrease in
vg and an increase in JHAMT.
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Importantly, the honey bees from Diet 2 colonies belong to the same statistically
significant group in marker gene expressions JHAMT after stimulation, but they exhibited
gene expression patterns closer to those of honey bees from Control-P colonies compared
to other honey bees in terms of vg and TOR1 gene expressions.

3. Discussion

Dietary proteins have no nutritional value until they are hydrolyzed by proteases
and peptidases into amino acids, dipeptides, and tripeptides. These components provide
essential nitrogen and sulfur for organisms and cannot be replaced by carbohydrates
and lipids [30]. The hydrolysis process occurs in the lumen of the small intestine in
vertebrates [30] and in the midgut of honey bees [31]. Protein digestion through hydrolysis
is crucial because highly digested food requires a smaller amount compared to less-digested
food, yet there are still gaps in this area [10].

Natural honey bee food, bee bread (Control-P), demonstrated a significantly high pro-
tein concentration of 20.59%, with 73.56% of it being digested by honeybees. Experimental
data slightly surpassed findings in the literature, which reported an 18.3% protein content
in bee bread [32] and a 70% digestion rate of soluble protein in pollen [33], which was
similar to the 76% digestibility rate in bee bread [10]. Bee bread showed higher digestibility
than pollen, likely due to fermentation in bee bread, which increases digestibility [34].
Using the same analysis, Diet 2 was initially chosen from the studied pollen substitute diets
because it contained higher levels of water-soluble proteins (8.81%), of which 43.54% were
digested by honey bees, showing a high correlation between them. Unsurprisingly, bee
bread, used in this research as a positive control, emerged as the optimal natural diet, as its
protein content and digestibility surpassed those of the diets examined in this research.

Furthermore, proteins digested from bee bread and subsequently from Diet 2 were
found to be more effective than those from Diet 1 and Megabee diets in terms of accu-
mulating in honey bee body proteins (in the head and abdomen). Head proteins play a
crucial role in the development of hypopharyngeal glands in nurse honey bees, which
secrete royal jelly to feed the queen and larvae [35]. Abdomen proteins without a digestive
system represent the fat body protein content. Previous studies have reported the effects
of high-protein nutrition on increasing fat body mass [36], which was identified as an
indirect indicator of individual bee immunocompetence [6,20]. So, Diet 2 was the best in
the metabolic transformation from diet to head and abdomen proteins in long-lived honey
bees compared to Diet 1 and Megabee.
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Because deformed wing virus (DWV) is the most prevalent virus in arthropod
species [37,38] and is related to Varroa infestation in honey bees, the detection of this
virus is the most common method to simply check honey bee health. However, regard-
ing their conclusions, researchers are divided into two groups. One group found that
workers from colonies fed a natural pollen diet had significantly lower DWV titers than
those fed an artificial diet [39], as well as diets high in fat content [38] and a grape pomace
diet [40]. Other researchers did not find clear patterns in DWV or sac brood titers with
nutrition [33,41,42], but DeGrandi-Hoffman et al., in 2010 [33], suggested that pollen sub-
stitutes can help prevent disease. Continuing this analysis, it was found that the DWV
load was lower in long-lived honey bees on 8 March when fed all-pollen substitute diets
compared to honey bees from the Control-P colony (bee bread). However, the low levels of
DWV in short-lived honey bees on 28 March were observed in honey bees fed only one Diet
2 from studied pollen substitute diets. Therefore, we cannot definitively state the stable
effect of pollen substitute diets against the DWV virus, but the effect of Diet 2 appeared to
be more efficient than others in early spring. Also, this suggests that fresh pollen, fresh bee
bread, and overwintered bee bread may have varying effects on honey bee responses to the
DWV virus. Additionally, we cannot determine the long-term effect of early spring feeding
on DWV resistance by 20 April. The nurses (one month later without diet stimulation) from
all colonies had low DWV loads, but foragers exhibited both high and low DWV loads in
different colonies, indicating a task-related effect. Curiously, DWV was low in both nurse
and forager honey bees from Control-N colonies, which were infected by chalkbrood and
weakened during spring, suggesting that the relative expression ratio of the virus DWV
and SBV showed no comprehensive interaction with chalkbrood.

Nevertheless, in Control-N colonies on 8 March, we observed a significant upregula-
tion in the recognition steps of the Toll, Imd, and JAK/STAT pathways, as represented by
spz, PGRP-LC, and domeless, as well as in apid 1 gene expressions (AMP). Therefore, innate
immunity genes predicted the weakened health of honey bees on 8 March, anticipating the
observed chalkbrood symptoms on 28 March. Thus, genes from the recognition step of the
innate immune response can be recommended for future research to identify the health
problems in honey bees related to chalkbrood and similar diseases.

Gene expression also indicates how an organism responds to nutrition at the molecular
level. The nutritional marker genes that responded to dieting included defensin 2, SOD1,
Trxr1, JHAMT, TOR1, and vg. Some of these genes, previously reported to be related
to nutrition, are involved in vitellogenin synthesis [43], antioxidant enzymes [44], and
immune function [45]. Although studied in short-lived honey bees, our research was
conducted on long-lived honey bees and yielded similar results. Additionally, vg, JHAMT,
and TOR1 genes responded not only to nutrition [46] but also to the transformation of
insects from obligatory winter diapause to spring reproductive activity [47,48]. Based on
this, a molecular model was developed to elucidate the transition of long-lived honey bees
from diapause to development (Figure 8).

Because worker honey bees do not lay eggs under normal conditions, as expected,
their gene expression model differed from that of Galeruca daurica [48] in terms of high, but
not low, vg gene expression [49] and additionally showed a positive correlation with TOR1
expression, confirming the findings of [46]. However, JHAMT gene expression remained
low, as typically observed in diapausing insects [50]. Also, the nutritional stimulation
of worker honey bees at the end of diapause was associated with an increase in JHAMT
expression, but a decrease in TOR1 and vg genes (Figure 8).

Feeding on an artificial diet resulted in the upregulation of the SOD2 gene (ROS en-
zyme) in the general innate immunity response. Additionally, spz (Toll pathway, recognition
step) and TOR1 (TOR pathway) were downregulated in all honey bees. This phenomenon
mirrors the findings of a diet experiment conducted on fish. In that study, increasing the
dietary tryptophan (Trp) concentration from 4.8 to 6.8 g/kg resulted in enhanced activities
of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD, ROS enzymes). Con-
versely, mRNA expression levels of the target of rapamycin (TOR pathway) and Toll-like
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receptors in the intestine (Toll pathway) were significantly downregulated [51]. Therefore,
a balanced diet with a moderate amount of Trp (4.8 g/kg) was observed to be effective for
fish. Considering this, it is essential to ensure that the species-specific protein content in
the diet is optimal for animals, neither too high nor too low. This aspect warrants further
study in the future.
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In our study, we employed nutritional markers. However, the hyper-, normal-, and
hypo-levels of gene expression have not yet been standardized, and we lack a methodology
to establish a universal scale. Therefore, we cannot conclusively determine whether the
stimulation of genes to upregulate or downregulate had a negative or positive effect on
honey bee health. This will be a challenge for future research.

4. Material and Methods
4.1. Experimental Honey Bees

Honey bees (A. m. ligustica) were sourced from fifteen colonies at the Gangneung
apiary in the Republic of Korea in 2023. Managed by a professional beekeeper, experimental
colonies adhered to standard beekeeping practices to prevent nutrient stress. Samples
for analysis were collected from colonies showing no clinical symptoms of diseases or
infestation by Varroa destructor. The study involved three biological replications for each
diet. The impact of the diet was examined in honey bees sampled on 16 February (owb,
overwintered honey bees) and 8 March (owb+diet, overwintered honey bees under di-
etary conditions), which were 20 days before and after commencing the diet experiment,
respectively (Figure 9).

During this period, spring generations of honey bees were raised but had not yet
emerged. After emerging, they were sampled for ongoing disease detection. The newly
emerged honey bees were collected on 28 March, the final day of the diet experiment when
diets were discontinued. After 20 days, these same honey bees were expected to have
transformed into foragers and were then collected at the hive entrance with pollen loads.
Nurses, responsible for caring for larvae, were also sampled on 20 April.

The data on honey bees from Diet 1, Diet 2, and Megabee colonies were compared
to those of honey bees from Control-P colonies, which received natural honey bee food
without restrictions and also achieved the highest management scores during and after the
experiment in 2023. Additionally, the further validation of the conclusions was conducted
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by comparing them with honey bees from Control-N colonies (“not normal”), which also
received a diet at the same time as the other colonies; however, symptoms of chalkbrood
were detected from 29 March. Symptoms increased before the eventual collapse of the
colonies at the end of May. A negative control, where honey bees experienced starvation,
was not used to avoid the early collapse of colonies, which could have prematurely ended
the field experiment.
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4.2. Preparation of Diets

The pollen substitution diets included protein, carbohydrates, minerals, and fats, and
their nutrition was described previously [18,19]. These items were reasonably priced in
the local market, and special components were Soytide (CJ Global Food and Bio Company,
Seoul, Republic of Korea), apple juice (Jaan Company, Dubai, United Arab Emirates), and
chlorella powder (Cheonil Herbal Medicine, Seoul, Republic of Korea). The Supplemental
Diets listed in Table 1 were created.

Each diet was tested with three replications in the field for three pollen substitute diets,
including naturally presented bee bread in colonies as a positive control (Control-P). The
various Supplemental Diets were prepared separately first by measuring known quantities
and carefully blended by hand. The commercial diet Megabee (Castle Dome Solutions,
Helena, AR, USA), a blend of plant-based proteins without pollen that is widely used by
beekeepers in the USA, was also tested.

4.3. Protein Concentration

The protein concentrations of the diet, head, thorax, hindgut, and abdomen were
measured separately. All steps of sample preparation were conducted using iced chemicals
and tissues. Instruments were treated with 70% ethanol between the dissections of samples
from different colonies. Three honey bees from each colony were dissected, separating the
heads, thoraxes (without wings and legs), and abdomens (without the digestive system,
with hindguts removed for disability analysis). Samples from the three bees per colony
were pooled in a 1.5 mL tube using the Ultra Grinder B kit (Taeshin Bioscience Co., Ltd.,
Busan, Republic of Korea). Samples were prepared by weighing the corresponding parts of
the honey bees or 200 mg of diet on a balance. Next, an amount of 0.25 M Tris HCl buffer at
pH 7.5 was measured to obtain 20% of the tissue in sample. The honey bee tissues or diet
were then ground in this tube using a sterile disposable homogenizer included in the Ultra
Grinder B kit, along with 100 µL of buffer. The mixture was later diluted to a 20% solution
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using the same buffer and centrifuged at 13,000× g for 30 s, and the supernatant was used
to measure the protein concentration.

The water-soluble total protein concentration was determined using the colorimetric
method with the Pierce™ BCA Protein Assay Kit (bicinchoninic acid, BCA) (Thermo Fisher
Scientific Inc., Waltham, MA, USA) following the manufacturer’s instructions. The eight-
point calibration curve was performed in duplicate from the bovine serum albumin (BSA)
included in the kit in the concentration range from 0 to 2000 µg/mL (Figure S1).

The analyses were performed in triplicate. Samples in amounts of 25 µL of diet,
head, and thorax and 1 µL of gut and abdomen samples were mixed with the working
reagent on a sterile polystyrene black plate with 96 wells (SPL Life Science Co., Ltd.,
Pocheon, Republic of Korea) and kept under 37 ◦C for 30 min in the incubator. After that,
the absorbance at 562 nm was measured on the multimode reader BioTek Synergy HTX
(Agilent, Santa Clara, CA, USA) using Agilent BioTek Gen 5 Software (Agilent, CA, USA).
The standard curve was used to determine the protein concentration of each unknown
sample [52] and recalibrated for one unit of the honey bee’s head, thorax, and abdomen.

4.4. Protein Digestion

The approximate protein digestibility was calculated using Equation (1).

Approximate protein digestibility (%) = (A − B)/A × 100 (1)

where A is the total water-soluble proteins in the diet, and B is the total water-soluble
proteins in the hindgut [53,54].

4.5. RNA Extraction and cDNA Synthesis

A total of 300 honey bees (20 winter bees from each colony) A. m. ligustica from each
sampling date were collected in labeled tubes and stored at −80 ◦C. Three honey bees from
each colony were analyzed. Total tissue RNA was extracted from the whole bodies of nine
randomly selected bees in each dietary group using a Qiagen RNeasy Mini Kit (#74104;
Qiagen, Valencia, CA, USA). The RNA concentration and purity were quantified using
OD260/OD280 values between 1.8 and 2.0. Next, reverse transcription was performed
using an RNA to cDNA EcoDryTM Premix (Oligo dT) kit (Takara, Osaka, Japan). The
reverse transcription reaction mixture included 50 ng/µL total RNA (with the clear volume
calculated for each sample) and RNase-free water for a total volume of 20 µL. Reverse
transcription was conducted at 42 ◦C for 60 min, followed by heating at 70 ◦C for 10 min.

4.6. Quantitative Real-Time PCR

Relative expression was measured for ten genes of defense system (spz, dorsal-1, PGRP-
LC, relish, domeless, defensin-2, apid-1, SOD, SOD2, and Trxr1), two virus-related genes (DWV
and SBV), and three genes related to nutrition and development (vg, TOR1, and Juvenile
Hormone Acid Methyltransferase, JHAMT). The housekeeping gene β-actin was used as an
endogenous control. The PCR primer sequences are shown in Table S1. The reaction
conditions were optimized. Quantitative real-time PCR (qRT-PCR) was conducted using
an AccuPower 2X GreenStarTM qPCR Master Mix (BIONEER, Oakland, CA, USA) on
an AriaMx Real-Time PCR System (Agilent Technologies LDA, Penang, Malaysia). The
qRT-PCR reaction volume of 20 µL included 2 µL of template cDNA, 10 µL of 2X GreenStar
Master Mix, 1 µL of upstream and downstream primers (5 pM/µL), and 6 µL of ddH2O.
Each sample was technically replicated three times.

The qRT-PCR amplification conditions were as follows: an initial denaturation at 95 ◦C
for 10 min, followed by 40 cycles of denaturation at 95 ◦C for 30 s, annealing at 60 ◦C for
25 s, and extension at 72 ◦C for 15 s. Data analysis was performed using free analysis
software Agilent AriaMx version 2.0. Relative gene expression data were analyzed using
the 2(−∆∆C(T)) method [55,56].

The confirmation of β-actin and amplicons in the RT-PCR products was performed
by separating them through electrophoresis in a 1% agarose gel at 100 V for 20 min and
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analyzing them using a gel documentation system, the Gerix 1010 transilluminator (Biostep
GmbH, Reiskirchen, Germany). A 100 bp DNA Ladder (BIONEER, BIO-RAD, Seoul,
Republic of Korea) was used as a reference. The confirmation of amplicons in the RT–PCR
products was performed by separating them through electrophoresis in a 2% agarose gel at
80 V for 40 min and analyzing them using the same gel documentation system, the Gerix
1010 transilluminator. A Dyne 50 bp DNA Ladder (Cat. No. A701, DYNEBIO, Seongnam,
Republic of Korea) was used as a reference.

4.7. Statistical Analysis

The statistical analysis, designed as illustrated in Figure 10, was conducted using
Microsoft Excel and XLSTAT Life Science version 2023.2.0 (Addinsoft, Paris, France). Specif-
ically, the categorization of honey bees into groups was plotted using agglomerative
hierarchical clustering (AHC). AHC was employed to analyze the multivariate dataset
containing 18 characters, grouping similar data points into clusters based on their pairwise
distances using a bottom-up approach [57]. Additionally, the principal component analysis
(PCA) plot was used within the same dataset to capture the majority of the variance in a
reduced-dimensional space to identify the best diet near Control-P. Moreover, the interpre-
tation of the PCA plot highlighted the principal components contributing most significantly
to the observed patterns, predicting the key molecular markers driving the variation in
the data.
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Figure 10. The statistical tests and criteria used for selection of markers and making decisions.

The same dataset was trained in elastic net regression analysis to confirm the pre-
dicted markers in PCA and informed decision-making against the dependent variable
by score. The elastic net regression model demonstrated robust performance in handling
multicollinearity and selecting relevant predictors, leading to improved predictive accu-
racy compared to traditional regression techniques [58]. The objective was to identify the
combination that minimizes the model’s error metrics, such as mean squared error (MSE)
or R squared. MSE measures the average squared difference between the actual values
and the values predicted by the model. Among several models, the one with the lower
MSE is generally preferred. R-squared measures the proportion of the variance in the
dependent variable (target) that is explained by the independent variables (features) in the
model. R-squared ranges from 0 to 1, where 0 indicates that the model does not explain
any of the variability in the target variable, and 1 indicates that the model explains all of
the variability.
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Pairwise correlation analysis was conducted using the Pearson method [59] to identify
significant relationships between the traits (p < 0.05). The correlations were interpreted
based on the guidelines provided by Hinkle et al. in 2003 [60], categorizing correlations as
very high positive (negative) correlation (±0.90 to 1.00), high positive (negative) correlation
(±0.70 to 0.90), moderately positive (negative) correlation (±0.50 to 0.70), low positive (neg-
ative) correlation (±0.30 to 0.50), and negligible correlation (±0.00 to 0.30) [59]. The mean,
standard deviation values, and normal distribution were calculated using the descriptive
statistics module. The visualization of gene expression was performed using the heatmap
module. For multiple comparisons of variables between groups of honey bees, ANOVA
was employed to test overall effects, followed by the Duncan post hoc test (p < 0.05).

5. Conclusions

The development and evaluation of new artificial diets involve testing the sensitivity
of the honey bee model to protein deficiency through nutritional markers. Over the past
decades, cumulative studies have enhanced our understanding of alternative diets for
humans, animals, and honey bees, as well as their impact on health. High protein content,
digestibility, and nutrient transformation in the body were key factors in selecting the
best artificial diet (Diet 2), which closely resembled the characteristics of honey bees that
were fed natural food (bee bread). Using machine learning, six molecular markers were
selected to investigate the diet’s impact on health and development and then tested by
comparing experimental honey bees with those that were fed bee bread. Honey bees
fed Diet 2 exhibited similarities to those fed bee bread. However, lacking a malnutrition
control, we refrained from clearly identifying the up- and downregulation of marker gene
expression. Additionally, the health of honey bees showing symptoms of chalkbrood
was uniquely stimulated compared to others, indicating differences in dietary stimulation
between health-deficient and healthy honey bees. Furthermore, we proposed a molecular
model to elucidate the transition of long-lived honey bees from diapause to development,
triggered by nutrition. This research underscores the influence of diets on genes associated
with the defense system and nutrition-related development, laying the foundation for
establishing molecular markers to assess animal nutrition status. These markers could aid
in selecting alternative artificial diets and mitigating seasonal malnutrition in agricultural
animals, thereby improving our quality of life in a changing climate.
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